Sunday, March 21, 2010

USES OF NANOTECHNOLOGY

The biological and medical research communities have exploited the unique properties of nanomaterials for various applications (e.g., contrast agents for cell imaging and therapeutics for treating cancer). Terms such as biomedical nanotechnology, nanobiotechnology, and nanomedicineare used to describe this hybrid field. Functionalities can be added to nanomaterials by interfacing them with biological molecules or structures. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. Thus far, the integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, physical therapy applications, and drug delivery vehicles.


Diagnostics
Nanotechnology-on-a-chip is one more dimension of lab-on-a-chip technology. Magnetic nanoparticles, bound to a suitable antibody, are used to label specific molecules, structures or microorganisms. Gold nanoparticles tagged with short segments of DNA can be used for detection of genetic sequence in a sample. Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dotsinto polymeric microbeads. Nanopore technology for analysis of nucleic acids converts strings of nucleotides directly into electronic signatures.

Drug delivery
Nanotechnology has been a boom in medical field by delivering drugs to specific cells using nanoparticles. The overall drug consumption and side-effects can be lowered significantly by depositing the active agent in the morbid region only and in no higher dose than needed. This highly selective approach reduces costs and human suffering. An example can be found in dendrimers and nanoporous materials. Another example is to use block co-polymers, which form micelles for drug encapsulation. They could hold small drug molecules transporting them to the desired location. Another vision is based on small electromechanical systems; NEMS are being investigated for the active release of drugs. Some potentially important applications include cancer treatment with iron nanoparticles or gold shells. A targeted or personalized medicine reduces the drug consumption and treatment expenses resulting in an overall societal benefit by reducing the costs to the public health system. Nanotechnology is also opening up new opportunities in implantable delivery systems, which are often preferable to the use of injectable drugs, because the latter frequently display first-order kinetics (the blood concentration goes up rapidly, but drops exponentially over time). This rapid rise may cause difficulties with toxicity, and drug efficacy can diminish as the drug concentration falls below the targeted range.


Tissue engineering
Nanotechnology can help to reproduce or to repair damaged tissue. “Tissue engineering” makes use of artificially stimulated cell proliferation by using suitable nanomaterial-based scaffolds and growth factors. Tissue engineering might replace today’s conventional treatments like organ transplants or artificial implants. Advanced forms of tissue engineering may lead to life extension.
For patients with end-state organ failure, there may not be enough healthy cells for expansion and transplantation into the ECM (extracellular matrix). In this case, pluripotent stem cells are needed. One potential source for these cells is iPS (induced Pluripontent Stem cells); these are ordinary cells from the patients own body that are reprogrammed into a pluripotent state, and has the advantage of avoiding rejection (and the potentially life-threatening complications associated with immunosuppressive treatments). Another potential source of pluripotent cells is from embryos, but this has two disadvantages: 1) It requires that we solve the problem of cloning, which is technically very difficult (especially preventing abnormalities). 2) It requires the harvesting of embryos. Given that each one of us was once an embryo, this source is claimed by some to be ethically problematic.


Chemistry and environment
Chemical catalysis and filtration techniques are two prominent examples where nanotechnology already plays a role. The synthesis provides novel materials with tailored features and chemical properties: for example, nanoparticles with a distinct chemical surrounding (ligands), or specific optical properties. In this sense, chemistry is indeed a basic nanoscience. In a short-term perspective, chemistry will provide novel “nanomaterials” and in the long run, superior processes such as “self-assembly” will enable energy and time preserving strategies. In a sense, all chemical synthesis can be understood in terms of nanotechnology, because of its ability to manufacture certain molecules. Thus, chemistry forms a base for nanotechnology providing tailor-made molecules, polymers, etcetera, as well as clusters and nanoparticles.


Catalysis
Chemical catalysis benefits especially from nanoparticles, due to the extremely large surface to volume ratio. The application potential of nanoparticles in catalysis ranges from fuel cell to catalytic converters and photocatalytic devices. Catalysis is also important for the production of chemicals.
Platinum nanoparticles are now being considered in the next generation of automotive catalytic converters because the very high surface area of nanoparticles could reduce the amount of platinum required. However, some concerns have been raised due to experiments demonstrating that they will spontaneously combust if methane is mixed with the ambient air. Ongoing research at the Centre National de la Recherche Scientifique (CNRS) in France may resolve their true usefulness for catalytic applications. Nanofiltration may come to be an important application, although future research must be careful to investigate possible toxicity.



Filtration
A strong influence of nanochemistry on waste-water treatment, air purification and energy storage devices is to be expected. Mechanical or chemical methods can be used for effective filtration techniques. One class of filtration techniques is based on the use of membranes with suitable hole sizes, whereby the liquid is pressed through the membrane. Nanoporous membranes are suitable for a mechanical filtration with extremely small pores smaller than 10 nm (“nanofiltration”) and may be composed of nanotubes. Nanofiltration is mainly used for the removal of ions or the separation of different fluids. On a larger scale, the membrane filtration technique is named ultrafiltration, which works down to between 10 and 100 nm. One important field of application for ultrafiltration is medical purposes as can be found in renal dialysis. Magnetic nanoparticles offer an effective and reliable method to remove heavy metal contaminants from waste water by making use of magnetic separation techniques. Using nanoscale particles increases the efficiency to absorb the contaminants and is comparatively inexpensive compared to traditional precipitation and filtration methods.
Some water-treatment devices incorporating nanotechnology are already on the market, with more in development. Low-cost nanostructured separation membranes methods have been shown to be effective in producing potable water in a recent study.


Energy
The most advanced nanotechnology projects related to energy are: storage, conversion, manufacturing improvements by reducing materials and process rates, energy saving (by better thermal insulation for example), and enhanced renewable energy sources.
Reduction of energy consumption
A reduction of energy consumption can be reached by better insulation systems, by the use of more efficient lighting or combustion systems, and by use of lighter and stronger materials in the transportation sector. Currently used light bulbs only convert approximately 5% of the electrical energy into light. Nanotechnological approaches like light-emitting diodes (LEDs) or quantum caged atoms (QCAs) could lead to a strong reduction of energy consumption for illumination.
Increasing the efficiency of energy production
Today's best solar cells have layers of several different semiconductors stacked together to absorb light at different energies but they still only manage to use 40 percent of the Sun's energy. Commercially available solar cells have much lower efficiencies (15-20%). Nanotechnology could help increase the efficiency of light conversion by using nanostructures with a continuum of bandgaps.
The degree of efficiency of the internal combustion engine is about 30-40% at the moment. Nanotechnology could improve combustion by designing specific catalysts with maximized surface area. In 2005, scientists at the University of Toronto developed a spray-on nanoparticle substance that, when applied to a surface, instantly transforms it into a solar collector.
The use of more environmentally friendly energy systems
An example for an environmentally friendly form of energy is the use of fuel cells powered by hydrogen, which is ideally produced by renewable energies. Probably the most prominent nanostructured material in fuel cells is the catalyst consisting of carbon supported noble metal particles with diameters of 1-5 nm. Suitable materials for hydrogen storage contain a large number of small nanosized pores. Therefore many nanostructured materials like nanotubes, zeolites or alanates are under investigation. Nanotechnology can contribute to the further reduction of combustion engine pollutants by nanoporous filters, which can clean the exhaust mechanically, by catalytic converters based on nanoscale noble metal particles or by catalytic coatings on cylinder walls and catalytic nanoparticles as additive for fuels.


Recycling of batteries
Because of the relatively low energy density of batteries the operating time is limited and a replacement or recharging is needed. The huge number of spent batteries and accumulators represent a disposal problem. The use of batteries with higher energy content or the use of rechargeable batteries or supercapacitors with higher rate of recharging using nanomaterials could be helpful for the battery disposal problem.


Information and communication
Current high-technology production processes are based on traditional top down strategies, where nanotechnology has already been introduced silently. The critical length scale of integrated circuits is already at the nanoscale (50 nm and below) regarding the gate length of transistors in CPUs or DRAM devices.


Memory Storage
Electronic memory designs in the past have largely relied on the formation of transistors. However, research into crossbar switch based electronics have offered an alternative using reconfigurable interconnections between vertical and horizontal wiring arrays to create ultra high density memories. Two leaders in this area are Nantero which has developed a carbon nanotube based crossbar memory called Nano-RAM andHewlett-Packard which has proposed the use of memristor material as a future replacement of Flash memory.


semiconductor devices
An example of such novel devices is based on spintronics.The dependence of the resistance of a material (due to the spin of the electrons) on an external field is called magnetoresistance. This effect can be significantly amplified (GMR - Giant Magneto-Resistance) for nanosized objects, for example when two ferromagnetic layers are separated by a nonmagnetic layer, which is several nanometers thick (e.g. Co-Cu-Co). The GMR effect has led to a strong increase in the data storage density of hard disks and made the gigabyte range possible. The so called tunneling magnetoresistance (TMR) is very similar to GMR and based on the spin dependent tunneling of electrons through adjacent ferromagnetic layers. Both GMR and TMR effects can be used to create a non-volatile main memory for computers, such as the so called magnetic random access memory or MRAM.

In 1999, the ultimate CMOS transistor developed at the Laboratory for Electronics and Information Technology in Grenoble, France, tested the limits of the principles of the MOSFET transistor with a diameter of 18 nm (approximately 70 atoms placed side by side). This was almost one tenth the size of the smallest industrial transistor in 2003 (130 nm in 2003, 90 nm in 2004, 65 nm in 2005 and 45 nm in 2007). It enabled the theoretical integration of seven billion junctions on a €1 coin. However, the CMOS transistor, which was created in 1999, was not a simple research experiment to study how CMOS technology functions, but rather a demonstration of how this technology functions now that we ourselves are getting ever closer to working on a molecular scale. Today it would be impossible to master the coordinated assembly of a large number of these transistors on a circuit and it would also be impossible to create this on an industrial level.


Novel optoelectronic devices
In the modern communication technology traditional analog electrical devices are increasingly replaced by optical or optoelectronic devices due to their enormous bandwidth and capacity, respectively. Two promising examples are photonic crystals and quantum dots. Photonic crystals are materials with a periodic variation in the refractive index with a lattice constant that is half the wavelength of the light used. They offer a selectable band gap for the propagation of a certain wavelength, thus they resemble a semiconductor, but for light or photons instead ofelectrons. Quantum dots are nanoscaled objects, which can be used, among many other things, for the construction of lasers. The advantage of a quantum dot laser over the traditional semiconductor laser is that their emitted wavelength depends on the diameter of the dot. Quantum dot lasers are cheaper and offer a higher beam quality than conventional laser diodes.


Displays
The production of displays with low energy consumption could be accomplished using carbon nanotubes (CNT). Carbon nanotubes are electrically conductive and due to their small diameter of several nanometers, they can be used as field emitters with extremely high efficiency for field emission displays (FED). The principle of operation resembles that of the cathode ray tube, but on a much smaller length scale.


Quantum computers
Entirely new approaches for computing exploit the laws of quantum mechanics for novel quantum computers, which enable the use of fast quantum algorithms. The Quantum computer has quantum bit memory space termed "Qubit" for several computations at the same time. This facility may improve the performance of the older systems.


Heavy Industry
An inevitable use of nanotechnology will be in heavy industry.


Aerospace
Lighter and stronger materials will be of immense use to aircraft manufacturers, leading to increased performance. Spacecraft will also benefit, where weight is a major factor. Nanotechnology would help to reduce the size of equipment and thereby decrease fuel-consumption required to get it airborne.
Hang gliders may be able to halve their weight while increasing their strength and toughness through the use of nanotech materials. Nanotech is lowering the mass of super capacitors that will increasingly be used to give power to assistive electrical motors for launching hang gliders off flatland to thermal-chasing altitudes.


Construction
Nanotechnology has the potential to make construction faster, cheaper, safer, and more varied. Automation of nanotechnology construction can allow for the creation of structures from advanced homes to massive skyscrapers much more quickly and at much lower cost.


Refineries
Using nanotech applications, refineries producing materials such as steel and aluminium will be able to remove any impurities in the materials they create.


Vehicle manufacturers
Much like aerospace, lighter and stronger materials will be useful for creating vehicles that are both faster and safer. Combustion engines will also benefit from parts that are more hard-wearing and more heat-resistant.


Consumer goods
Nanotechnology is already impacting the field of consumer goods, providing products with novel functions ranging from easy-to-clean to scratch-resistant. Modern textiles are wrinkle-resistant and stain-repellent; in the mid-term clothes will become “smart”, through embedded “wearable electronics”. Already in use are different nanoparticle improved products. Especially in the field of cosmetics, such novel products have a promising potential.


Foods
Complex set of engineering and scientific challenges in the food and bioprocessing industry for manufacturing high quality and safe food through efficient and sustainable means can be solved through nanotechnology. Bacteria identification and food quality monitoring using biosensors; intelligent, active, and smart food packaging systems; nanoencapsulation of bioactive food compounds are few examples of emerging applications of nanotechnology for the food industry.

Nanotechnology can be applied in the production, processing, safety and packaging of food. A nanocomposite coating process could improve food packaging by placing anti-microbial agents directly on the surface of the coated film. Nanocomposites could increase or decrease gas permeability of different fillers as is needed for different products. They can also improve the mechanical and heat-resistance properties and lower the oxygen transmission rate. Research is being performed to apply nanotechnology to the detection of chemical and biological substances for sensanges in foods.


Nano-foods
New consumer products Emerging Nanotechnologies (PEN), based on an inventory it has drawn up of 609 known or claimed Nano-products.
On Pen’s list are three foods -- a brand of canola cooking oil called Canola Active Oil, a tea called Nanotea and a chocolate diet shake called Nanoceuticals Slim Shake Chocolate.
According to company information posted on PEN's Web site, the canola oil, by Shemen Industries of Israel, contains an additive called "nanodrops" designed to carry vitamins, minerals and phytochemicals through the digestive system.and urea
The shake, according to U.S. manufacturer RBC Life Sciences Inc., uses cocoa infused "NanoClusters" to enhance the taste and health benefits of cocoa without the need for extra sugar.


Household
The most prominent application of nanotechnology in the household is self-cleaning or “easy-to-clean” surfaces on ceramics or glasses. Nanoceramic particles have improved the smoothness and heat resistance of common household equipment such as the flat iron.


Optics
The first sunglasses using protective and anti-reflective ultrathin polymer coatings are on the market. For optics, nanotechnology also offers scratch resistant surface coatings based on nanocomposites. Nano-optics could allow for an increase in precision of pupil repair and other types of laser eye surgery.

Textiles
The use of engineered nanofibers already makes clothes water- and stain-repellent or wrinkle-free. Textiles with a nanotechnological finish can be washed less frequently and at lower temperatures. Nanotechnology has been used to integrate tiny carbon particles membrane and guarantee full-surface protection from electrostatic charges for the wearer. Many other applications have been developed by research institutions.


Cosmetics
One field of application is in sunscreens. The traditional chemical UV protection approach suffers from its poor long-term stability. A sunscreen based on mineral nanoparticles such as titanium dioxide offer several advantages. Titanium oxide nanoparticles have a comparable UV protection property as the bulk material, but lose the cosmetically undesirable whitening as the particle size is decreased.


Agriculture
Applications of nanotechnology have the potential to change the entire agriculture sector and food industry chain from production to conservation, processing, packaging, transportation, and even waste treatment. NanoScience concepts and Nanotechnology applications have the potential to redesign the production cycle, restructure the processing and conservation processes and redefine the food habits of the people.
Major Challenges related to agriculture like Low productivity in cultivable areas, Large uncultivable areas,Shrinkage of cultivable lands, Wastage of inputs like water, fertilizers, pesticides, Wastage of products and of course Food security for growing numbers can be addressed through various applications of nanotechnology.

Saturday, November 28, 2009

What are the advantage of nanotechnology?

* Nanoparticles are so small that they can easily penetrate into the skin and thus help in repairing the skin tissues. It is because of this factor that you can prevent skin aging by using the products which have the nanotechnology built into it.
* This technology is also used in preventing the hair loss and graying issues.
* Sunscreens and some anti-aging products are the main cosmetic products on the market currently being made using nanotechnology. They are designed to penetrate the upper layers of the skin and stimulate new skin cell production which gives skin a new, plump, and youthful appearance.
* We all know the cosmetic range from L'Oreal which has brought the fantastic wrinkle-free creams for the aged women who want to look elegant and gorgeous. The wrinkle-free creams have given the immediate results because the products contain nanosiomes of Pro-Retinol A.
* Some of the nanoparticles such zinc oxide and titanium dioxide have been included in sunscreen.
* The products that use this nanotechnology are costlier as compared to others.
* Some of the products that they have introduced which incorporate the use of nanosomes are Biotherm Age Fitness Nuit, Vichy Reti C, and Revitalift Double Lifting

Monday, November 9, 2009

The advantages of nanotechnology

One of the basic principles of nanotechnology is positional control. At the macroscopic scale, the idea that we can hold parts in our hands and assemble them by properly positioning them with respect to each other goes back to prehistory. we celebrate ourselves as the tool using species.

At the molecular scale, the idea of holding and positioning molecules is new and almost shocking. However, as long ago as 1959 Richard Feynman, the Nobel prize winning physicist, said that nothing in the laws of physics prevented us from arranging atoms the way we want: “…it is something, in principle, that can be done; but in practice, it has not been done because we are too big.”

What would it mean if we could inexpensively make things with every atom in the right place?

* For starters, we could continue the revolution in computer hardware right down to molecular gates and wires — something that today’s lithographic methods (used to make computer chips) could never hope to do.
* We could inexpensively make very strong and very light materials: shatterproof diamond in precisely the shapes we want, by the ton, and over fifty times lighter than steel of the same strength.
* We could make a Cadillac that weighed fifty kilograms, or a full-sized sofa you could pick up with one hand.
* We could make surgical instruments of such precision and deftness that they could operate on the cells and even molecules from which we are made — something well beyond today’s medical technology.

The list goes on — almost any manufactured product could be improved, often by orders of magnitude.

What will we be able to make?

Nanotechnology should let us make almost every manufactured product faster, lighter, stronger, smarter, safer and cleaner. We can already see many of the possibilities as these few examples illustrate. New products that solve new problems in new ways are more difficult to foresee, yet their impact is likely to be even greater. Could Edison have foreseen the computer, or Newton the communications satellite?

1. Improved transportation
* Today, most airplanes are made from metal despite the fact that diamond has a strength-to-weight ratio over 50 times that of aerospace aluminum. Diamond is expensive, we can’t make it in the shapes we want, and it shatters. Nanotechnology will let us inexpensively make shatterproof diamond (with a structure that might resemble diamond fibers) in exactly the shapes we want. This would let us make a Boeing 747 whose unloaded weight was 50 times lighter but just as strong.
* Today, travel in space is very expensive and reserved for an elite few. Nanotechnology will dramatically reduce the costs and increase the capabilities of space ships and space flight.2 The strength-to-weight ratio and the cost of components are absolutely critical to the performance and economy of space ships: with nanotechnology, both of these parameters will be improved…3 Beyond inexpensively providing remarkably light and strong materials for space ships, nanotechnology will also provide extremely powerful computers with which to guide both those ships and a wide range of other activities in space.

2. Atom computers
* Today, computer chips are made using lithography — literally, “stone writing.” If the computer hardware revolution is to continue at its current pace, in a decade or so we’ll have to move beyond lithography to some new post lithographic manufacturing technology. Ultimately, each logic element will be made from just a few atoms.
* Designs for computer gates with less than 1,000 atoms have already been proposed — but each atom in such a small device has to be in exactly the right place. To economically build and interconnect trillions upon trillions of such small and precise devices in a complex three dimensional pattern we’ll need a manufacturing technology well beyond today’s lithography: we’ll need nanotechnology.
* With it, we should be able to build mass storage devices that can store more than a hundred billion billion bytes in a volume the size of a sugar cube; RAM that can store a mere billion billion bytes in such a volume; and massively parallel computers of the same size that can deliver a billion billion instructions per second.

3. Military applications
* Today, “smart” weapons are fairly big — we have the “smart bomb” but not the “smart bullet.” In the future, even weapons as small as a single bullet could pack more computer power than the largest supercomputer in existence today, allowing them to perform real time image analysis of their surroundings and communicate with weapons tracking systems to acquire and navigate to targets with greater precision and control.
* We’ll also be able to build weapons both inexpensively and much more rapidly, at the same time taking full advantage of the remarkable materials properties of diamond. Rapid and inexpensive manufacture of great quantities of stronger more precise weapons guided by massively increased computational power will alter the way we fight wars. Changes of this magnitude could destabilize existing power structures in unpredictable ways. Military applications of nanotechnology raise a number of concerns that prudence suggests we begin to investigate before, rather than after, we develop this new technology.4

4. Solar energy
* Nanotechnology will cut costs both of the solar cells and the equipment needed to deploy them, making solar power economical. In this application we need not make new or technically superior solar cells: making inexpensively what we already know how to make expensively would move solar power into the mainstream.

5. Medical uses
It is not modern medicine that does the healing, but the cells themselves: we are but onlookers. If we had surgical tools that were molecular both in their size and precision, we could develop a medical technology that for the first time would let us directly heal the injuries at the molecular and cellular level that are the root causes of disease and ill health. With the precision of drugs combined with the intelligent guidance of the surgeon’s scalpel, we can expect a quantum leap in our medical capabilities.

Sunday, October 18, 2009

Some applications of Carbon Nanotubes

* Micro-electronics / semiconductors
* Conducting Composites
* Controlled Drug Delivery/release
* Artificial muscles
* Supercapacitors
* Batteries
* Field emission flat panel displays
* Field Effect transistors and Single electron transistors
* Nano lithography
* Nano electronics
* Doping
* Nano balance
* Nano tweezers
* Data storage
* Magnetic nanotube
* Nanogear
* Nanotube actuator
* Molecular Quantum wires
* Hydrogen Storage
* Noble radioactive gas storage
* Solar storage
* Waste recycling
* Electromagnetic shielding
* Dialysis Filters
* Thermal protection
* Nanotube reinforced composites
* Reinforcement of armour and other materials
* Reinforcement of polymer
* Avionics
* Collision-protection materials
* Fly wheels

Nanotube Applications

The properties of carbon nanotubes have caused researchers and companies to consider using them in several fields. For example, because carbon nanotubes have the highest strength to weight ratio of any known material, researchers at NASA are combining nanotubes with other materials into composites that can be used to build lightweight spacecraft.

Another property of nanotubes is that they can easily penetrate membrances such as cell walls. In fact, nanotubes long, narrow shape make them look like miniature needles, so it makes sense that they can function like a needle at the cellular level. Medical researchers are using this property by attaching molecules that are attracted to cancer cells to nanotubes to deliver drugs directly to the diseased cells.

Another interesting property of nanotubes is that their electrical resistance changes significantly when other molecules attach themselves to the carbon atoms. Companies are using this property to develop sensors that can detect chemical vapors such as carbon monoxide or biological molecules.These are just a few of the potential uses of carbon nanotubes.

Nanotechnology and Multi-Scale Simulations

In the past couple of decades, the technology available has increased exponentially. We are able to examine and solve problems now that were only a dream to many scientists 20-25 years ago. As we increase our ability to discover and expand we are also facing new problems every day. These problems come as we delve further into the microscopic and atomistic world. We know how many materials act on the macro scale and we can model different simulations because of that knowledge. As we get into the micro scale and attempt to discover the actions of the atoms as they act with each other we have difficulty simulating the results. This is where the study of Harold S Park helps. It is a study about bridging multi scales for the discovery of how nano wires act and other atomistic applications. The bridging scale couples finite element simulations with molecular dynamic simulations and puts it into two dimensions. The paper takes the reader through a mathematical derivation and two separate problems, one involving wave propagation and one involving dynamic crack propagation. Both of these problems are analyzed mathematically and visually. The point of this study is to create a scale between the atomistic and continuum simulations. Another simulation that Harold talked about during his presentation was the simulation of a gold nanowire and how its atoms acted as a force was placed upon the wire. The wire was attached at one end and it was pulled at the other. As the wire was stretched it reached a point when the atoms in the wire aligned themselves and then finally snapped into two pieces. The amazing thing about the nano-wire was that it was actually stronger than a large hand held macro-scaled gold wire. It is in this technology that major advances in will be reached in the upcoming years.
According to Moore’s Law, if the technology used today is not transferred to the molecular level by the year 2015, then we are very behind. The computer companies are very interested in nanotechnology because it will enable them to create whole computers and such on the molecular level, leaving the rest of the actual machine to be designed any way the consumer would like. This technology involves the specific alignment of atoms to create a machine. This is counter to the normal design of machines, where a large machine makes a smaller one, and so on down the line. This requires the atoms to be placed and then systems of atoms can be used to create a machine or operator. Another aspect of nanotechnology of concern and interest is the self-replicating of atoms, or of molecular machines. This idea is similar to all of the atoms making up a tree; the atoms make up cells, which then self replicate and then join together to form the whole tree. These self-replicating molecules are essentially miniature manufacturing plants. They have something to build on the molecular level, something the eye cannot immediately see. The challenge is creating such a molecule and then having the ability to control it. If the molecular machines have the ability to self-replicate then one must be able to control the process. The idea that a self-replicating machine can do major damage is seen in the viruses that harm the human body. There must be a way to control the molecular machines so they do not act the same way and are harmful to the environment or humans.
The advancements of nanotechnology have a large impact of the field of medicine because of the possible ability to replicate on an atomistic level. Nanotechnology has the potential to replace many of the modern medicinal practices today. Modern medicine uses large handheld instruments and techniques that require a person to handle them or apply them. The idea of nanotechnology is that one can operate on and internal organ without using a scalpel. They have the ability to enter into the body without causing scarring or incisions. The possibility of introducing a molecule that is computer guided into the human body is the ultimate product. The molecule will be guided through the body to the point of disease of trauma and then have it self-replicate to treat the problem, all computer guided. Nanotechnology will in the future be the way medicine and surgery is practiced, but for now the needs to simulate what is happening are ultimate.

Sunday, September 27, 2009

Nanotechnology in Medicine

Applications of nanotechnology in medicine currently being developed involve employing nano-particles to deliver drugs, heat, light or other substances to specific cells in the human body. Engineering particles to be used in this way allows detection and/or treatment of diseases or injuries within the targeted cells, thereby minimizing the damage to healthy cells in the body.

The longer range future of nanotechnology in medicine is referred to as nanomedicine. This involves the use of manufactured nano-robots to make repairs at the cellular level.



Faster, lighter computers possible with nanotechnology

Smaller, lighter computers and an end to worries about electrical failures sending hours of on-screen work into an inaccessible limbo mark the potential result of Argonne research on tiny ferroelectric crystals.

"Tiny" means billionths of a meter, or about 1/500th the width of a human hair. These nanomaterials behave differently than their larger bulk counterparts. Argonne researchers have learned that they are more chemically reactive, exhibit new electronic properties and can be used to create materials that are stronger, tougher and more resistant to friction and wear than bulk materials.

Improved nano-engineered ferroelectric crystals could realize a 50-year-old dream of creating nonvolatile random access memory (NVRAM). The first fruits of it can be seen in Sony's PlayStation 2 and in smart cards now in use in Brazil, China and Japan. A simple wave of a smart card identifies personnel or pays for gas or public transportation.